1,409 research outputs found

    Quantifying the intrinsic amount of fabrication disorder in photonic-crystal waveguides from optical far-field intensity measurements

    Full text link
    Residual disorder due to fabrication imperfections has important impact in nanophotonics where it may degrade device performance by increasing radiation loss or spontaneously trap light by Anderson localization. We propose and demonstrate experimentally a method of quantifying the intrinsic amount of disorder in state-of-the-art photonic-crystal waveguides from far-field measurements of the Anderson-localized modes. This is achieved by comparing the spectral range that Anderson localization is observed to numerical simulations and the method offers sensitivity down to ~ 1 nm

    Hepatobiliary scintigraphy with SPET in the diagnosis of bronchobiliary fistula due to a hydatid cyst

    Get PDF
    In this report, we present the application of hepatobiliary scintigraphy using Tc-99m mebrofenin in the diagnosis of bronchobiliary fistula caused by a liver hydatid cyst, which penetrated the diaphragm. Hepatobiliary scintigraphy noticeably depicted the leakage of the tracer from the biliary system of the liver to the bronchial tree. Hepatobiliary scintigraphy stands as a robust modality in the accurate diagnosis and treatment planning of bronchobiliary fistulas. © 2015, P.Ziti and Co. All rights reserved

    Cooperative effects in surfactant adsorption layers at water/alkane interfaces

    No full text
    In the present work, the properties of dodecyl dimethyl phosphine oxide (C12DMPO) at the water/decane interface are studied and compared with those obtained earlier at the interface to hexane. To simulate the interfacial behavior, a two-component thermodynamic model is proposed, which combines the equation of state and Frumkin isotherm for decane with the reorientation model involving the intrinsic compressibility for the surfactant. In this approach, the surface activity of decane is governed by its interaction with C12DMPO. The theory predicts the influence of decane on the decrease of the surface tension at a very low surfactant concentration for realistic values of the ratio of the adsorbed amounts of decane and surfactant. The surfactantrsquo;s distribution coefficient between the aqueous and decane phases is determined. Two types of adsorption systems were used: a decane drop immersed into the C12DMPO aqueous solution, and a water drop immersed into the C12DMPO solution in decane. To determine the distribution coefficient, a method based on the analysis of the transfer of C12DMPO between water and decane is also employed

    An evolutionary modelling approach to predicting stress-strain behaviour of saturated granular soils

    Get PDF
    Purpose: To develop a unified framework for modelling triaxial deviator stress - axial strain and volumetric strain – axial strain behaviour of granular soils with the ability to predict the entire stress paths, incrementally, point by point, in deviator stress versus axial strain and volumetric strain versus axial strain spaces using an evolutionary-based technique based on a comprehensive set of data directly measured from triaxial tests without pre-processing. 177 triaxial test results acquired from literature were used to develop and validate the models. Models aimed not only to be capable of capturing and generalising the complicated behaviour of soils but also to explicitly remain consistent with expert knowledge available for such behaviour. Methodology: Evolutionary polynomial regression was used to develop models to predict stress - axial strain and volumetric strain – axial strain behaviour of granular soils. EPR integrates numerical and symbolic regression to perform evolutionary polynomial regression. The strategy uses polynomial structures to take advantage of favourable mathematical properties. EPR is a two-stage technique for constructing symbolic models. It initially implements evolutionary search for exponents of polynomial expressions using a genetic algorithm (GA) engine to find the best form of function structure, secondly it performs a least squares regression to find adjustable parameters, for each combination of inputs (terms in the polynomial structure). Findings: EPR-based models were capable of generalizing the training to predict the behaviour of granular soils under conditions that have not been previously seen by EPR in the training stage. It was shown that the proposed EPR models outperformed ANN and provided closer predictions to the experimental data cases. The entire stress paths for the shearing behaviour of granular soils using developed model predictions were created with very good accuracy despite error accumulation. Parametric study results revealed the consistency of developed model predictions, considering roles of various contributing parameters, with physical and engineering understandings of the shearing behaviour of granular soils. Originality/Value: In this paper, an evolutionary-based data-mining method was implemented to develop a novel unified framework to model the complicated stress-strain behaviour of saturated granular soils. The proposed methodology overcomes the drawbacks of artificial neural network-based models with black box nature by developing accurate, explicit, structured and user-friendly polynomial models, and enabling the expert user to obtain a clear understanding of the system
    • …
    corecore